. Dyo -/
N89-16321 occ

Vs

S50
wAs o7
. 1 visualization, Design, and Verification of Ada® Tasking

Using Timing Diagrams

by

R.F. Vvidale*, P,A, Szulewski**, and J.B. Weigs**

ABSTRACT

This paper recommends the use of timing diagrams in the design and

. testing of multi-task Ada programs, By displaying the task states vs.
time, timing diagrams can portray the simultaneous threads of data flow

and control which characterize tasking programs. This description of the

system's dynamic behavior from conception to testing 1s a necessary

adjunct to other graphical techniques, such as structure charts, which

essentially give a static view of the system. A series of steps is

recommended which incorporates timing diagrams into the design process.

Finally, a description is provided of a prototype Ada Execution Analyzer

(AEA) which automates the production of timing diagrams from VAX/Ada
‘ debugger output.

1.0 Introduction

Concurrent programming brings another dimension of complexity to

the problem of software design and testing. Unlike sequential program-

ming, where functional decomposition allows the designer to concentrate on
one module at a time, concurrent programming in Ada requires the coordin.-
tion of many modules (tasks) executing in parallel. The requirements for

task sequencing must be established early in the design, and carried

through into the traditional domain of detailed design. An incomplete

understanding of the task sequencing requirements or their erroneouy

implementation is an invitation to disaster.

®* Boston University, Boston, MA
*#The Charles Stark Draper Laboratory, Inc., Cambridge, MA

® pda is a registered trademark of the U.S. Govermnment, Ada Joint Proyram
Office.

. De3.2.1

ORIGINAL PAGE 1S
OF POOR QUALITY

TR N R T T SN TR TR BN ey S A WA s e e

Moat available software development tools and techniques, based on
functional decomposition, do not adequately portray time dependency and
thus do not help the developer visualize, design, and verify task sequenc-
ing. Tasking, as a programming technique, presents opportunities to im-
prove productivity, maintainability and portability, but also introduces
the possibility of programming errors unique to tasking. Incorrect design
or implementation of tasking will produce unintended task sequencing which
at best degrades system performance, at worst results in deadlock,

deadness, or starvation,

Within the past three years, a number of object-oriented design
methods have been proposed specifically for Ada, See Booch [B0OOC83), Buhr
[BUHR84]), and Cherry [CHER85], for example. These methods all use the
structure-chart type of diagram to describe the architecture of an Ada
program. With the exception of Buhr, whose diagrams include some temporal
notations, these representations are essentially static, and as such are
of limited use in visualizing the overall sequencing of task interactions
intended for a design, Buhr does make limited use of timing diagrams in
his book (BUHR84] to illustrate the rendezvous, but does not include them

in the design process.

It is the opinion of the authors that timing diagrams are a neces-
sary adjunct to structure charts and should be used in conjunction with
them first to design an Ada tasking program, then later to verify that it
is behaving as expected. Tai (TAIKB6) has also recognized the value of
timing diagrams (rendezvous graphs, in his terminology) for debugging Ada

tasking programs but does not advocate their use in the design process.

2.0 Timing Diagrams in Program Development

Timing diaqgqrams are useful to Ada program developers at sgeveral
phases in the life cycle. Data flow sequencing must be considered during
the requirements analysis, preliminary design, detailed design, debuyging,
and testing., With tasking the proportion of time devoted to desiqgn, in
relation to implementation, is much greater than for sequential programs.
Wwe propose the following steps for multi-task Ada proqram development for

gaining confidence in the desiqgn before and after implementation.

D.3.2.2

P L "%;5’

1e

3.

5.

visualize objects and data flows using “cloud diagrams" to
represent objects in the problem domain, Single threads of
data flow can be shown by numbering them in sequence, but
multiple, interacting threads are difficult to show.

Use preliminary timing dlagrams, which do not show directions
of calls, to ahow scenarios of required task interaction.

Steps 1 and 2 are problem-domain representations.

Define Ada data structures and code and compile global data
types.

Transform the problem-domain objects into Aa program units and
portray these with structure graphs showing caller-callee
relationships. Refine the preliminary timing diagrams to show
caller-callee relationships with task ready/blocked state

ir€ormation.

Code the structure graphs in Ada as program unit gpecifica-

tions.

Code control skeletons in the program unit bodies to implement
the task interactions visualized in the timing diagrams and

annotated structure graphs,
Execute the code skeletons and generate a timing diagram.

Compare timing diagrams againgt desired behavior.

Revise design as necesgsary.

10. Complete Detailed Design of program unit bodies,

11. Generate timing diagrams to verify.

3.0 Automated Timing Diagram Generation

Automated support for the timing diagrams described in the preceed-

ing section is not, to these authors' knowledge, publically available, but

would require two forms: predictive and actual.

Dl3.2.3

The preliminary timing diagrams would be pradictive of the
program's behavior, These diagrams would be drawn before any code is
written to guide the developer in conatructing the first level of task
interaction. Succesaive, ~ctual timing diagrams would be derived by
simulating or executing program units and automatically extracting task
trace information.

To date, no work has been done to develop automated support for the
predictive diagrams, which is still a manual proraess. It is, however,
feasible that a system, using formal specification and an assertion
checker, could be developed to support this activity. There has, however
been some work done by the authors of this paper in the development of a

tool for generating actual timing diagrams of multi-task Ada programs.

4.0 The Ada Execution Analyzer Prototype

The Ada Execution Analyzer (AEA) Prorotype has becen developed at
The Charles Stark Draper Laboratory, Inc. {(CSDL), to explicitly show the
relaticnship of time, concurrent oper:tions, and task communication using
the timing dliagram format for multi-task VAX/VMS Ada programs. The AFEA
provides the capability to visually monitor the runtime execution of
multitask Ada programs developed in the DEC VAX/VMS Ada Develorment
Environment. The AEA 1is run as an extension to the VAX/VMS Symbolic
Debugger, and thus provides all the capabilities of that debugger plus a
graphic display of task execution, The AEA producus both an overview
timing diagram which shows up to 20 Ada tasks, and a detailed timing
diagram which shows up to 5 selected tasks. An example Ovarview Timing
Diagram is shown in Figure 1 and an example Detailed Timing Diagram is
shown in Figqure 2. The symbology used in botia diagrams is defined in

Tables 1 and 2.

The impatus for developing the AFA was the inability of the conven-
tional DEC/Ada debugger to provide visibility {nto concurrent task be-
havior. Even though multi-task information {8 available ftrom the
debugger, it is not casily converted to a udgeful format by manual means.

Tt is a time congumi: , and error prone procuss,

D.3.2.4

ORIGINAL PAGE IS
OF POOR QUALITY

The AEA provides graphic timing dlagrams on demand from a program

run, significantly reducing the debugging time for multitark proyrams.
The avallability of such a tool make practical the method outlined in
Section 2.0,

The AEA Prototype is written in VAX/Ada and was released for
ioternal use at CSPL in Decomber 1985. As a rapid-prototype, the AEA was
produced quickly in order to allow users soms functionality and the oppor-
tunity to suggest enhancements. To date, the AEA has been used to debug
some small tasking programs for both real projects and in-hougse Ada train-
ing problems. User acceptance of the tool has been generally favorable

and the tool will likely be maintained as a corporate resource.

5.0 Future Extensions

Extensions to the AEA fall intc three categories: short-term,
medium-term, and long-term. Short-term extensions (within 6 months) will
focus on making the current AEA implementation more user friendly and
including some options to reduce clutter in the diagrams by selectively

blanking tasks from the diagram.

Medium-term extensions (within 18 months) will focus on transport-
ing the A=A to an embedded microprocessor development environment in order

to extract timing diagrams from a target processor,

Long-term extensions (beyond 18 months) might include automatic
task sequence checking and automatic generation of program unit body con-
trol skeletons. These extensions require the use of a formal specifica-

tion technique 1like the Task Sequencing Language (TSL) (HELM8S] during
development,

6.0 onclusions

Ada tasking adds a new dimension of complexity which is hard to
visualize using estahlished graphical design methods. with this added
complexity, it i3 essential to work out the required task sequencing early
in the design and have a means for verifying task sequencing behavior

during testing.

D.3.2.5

WrTR L e WALt A Ha \

R NN W

A "y e -

(AN

. Timing diagrams are a natural, easily understood means of visualiz-
ing task sequencing in the conceptual and tesdting phases of concurrent
program development, Timing diagrams can evolve with the data-flow
picture of a systems They can show time explicitly and can illustrate
multiple threads of control including the effects of time slicing. 1In
this manner they can be used to identify serious tasking errors like

deadlock, race conditions, and starvation.

A prototype Ada Execution Analyzer, which produces timing diagrams
from VAX/Ada debugger output, has demonstrated the value of timing dia-
grams in understanding the behavior of an Ada program with multi-tasking.
The authors believe that the expanded role for timing diagrams suggested
in this paper will result in fewer design errors in multi-tasking
applications using Ada.

REFERENCES

{BOOC83]) Booch, G., Software Engineering with Ada, Menlo Park, CA,
Benjamin/Cummings Publishing Company, 1983.

[BUHRB4) Buhr, R.J.A., System Design with Ada, Prentice-Hall,
Englewood Cliffs, NJ, 1984.

(CHERS8S5) Cherry, G., and B. Crawford, "The PAMELA Methodoloegy," Thought
Tools, Inc., Reston, VA, November 1985,

(TAIKS6] Tai, K.C., "A Graphical Notation for Describing Executions of
Concurrent Ada Programs,” ACM Ada Letters, Vol. VI, No. 1,

Jan., Feb. 1986,

[HELM85] Helmbold, D., and D. Luckham, "TSL: Task Sequencing Language,"
Proc. of the Ada International Conference, Paris, France, May
1985.

D.3.2.6

poeaiai)

':? TE T2 T3 T4 TS T6 T7 T8 19 T10 TH1 T12 T13 T14 T8 T16 T47 T18 T19 720

P? pP? p7 pT p? p? p? p? p? p? p? p! p? p? p? pl! p? p? p? p?

S T
.
. <A,
. l | . .
. . .
<A . .
* . .
<A . .
* * . .
<A . .
. 0 .)
<A, . .
.
A8 . . R2
’ . |

<C

®
[]
[]
.<T
<C |
1 7 87924
2 7 BANK.TELLER(%)
3 7 BANK.TELLER(2)
4 7 BANK.TELLER(3)
5 7 BANK.TELLER(4)
6 7 BANK.TELLER(S)
7 7 BANK.TELLER(S)
8 7 BANK.DISPATCHER
9 T MAIN.CUSTOMER(1)
10 7 MAIN.CUSTOMER(2)
1 7 MAIN.CUSTUMER(D)
12 7 MAIN.CUSTOMER(4)
13 7 MAIN.CUSTOMER(S)
14 7 MAIN.CUSTOMER(6)
15 7 MAIN.CUSTOMER(7)
16 7 MAIN.CUSTOMER(B)
17 7 MAIN.CUSTOMER(9)
18 7 MAIN.CUSTOMER(10)
19 7 MAIN.CUSTOMER(11)
7

MAIN_ CUSTOMER({ 12)

Figure 1. AEA Overview Diagram

. D.3.2.7

TASK 2 (1) 1
BANK. B
TELLER(1) T
|
.

<

ACCEPT TASK 8
ASSIGN

<CALL

ASK 7 (7))
ANK,
ELLER(6)

ACCEPT

ACCEPT TASK 10

<ACCEPY

<

L]
ACCEPT TASK 9
ASK

.

<CALL

ASK

CALL

TASK 8 (7)) Task9 (7))

BANK, MAIN.
DISPATCHER CUSTOMER(1)

<CALL

.

RNDZV TASK 2
ASSIGN

<CALL

A\]

ACCEPT TASK 3
READY

.
<ACCEPT

.
<CALL

RNDZV TASK 2

ASK

TASK 20 (7))
MAIN.
CUSTOMER(12)

<CALL

Figure

2. AEA Detailed Timing Diagram

D.3.2.8

T
o

;
b
¢

o Table 1. AEA Overview and Deta

XS n T EUE s FON

IV B T

Iled Diagram States

—e

" TASK STATES

TIMING " OVERVIEW
DIAGRAM _ DIAGRAM
SYMBOLS SYMBOLS MEANING
TASK N (#) ™ Task number N with priority
1 d) '
UNIT.TASK_NAME Logical name of program
unit that declares TASK.__
NAME
POINTS OF RENDEZVOUS:
RNDZV TASK # R# Task has rendezvoused with
task #
ENTRY_NAME Task #,ENTRY MAME
ACCEPT TASK # A# Task has accepted call from
task #
ENTRY;yAME Accept ENTR!_NAME

O . % W
r———0 »

<TERM <T

TASK STATES:
Task is running

Task is ready to run

Task is suspended

Task has terminated

D.3.2.9

‘ ; .’ .)1-) H
Table 2. AEA“Ovo‘r'vmw and Dctallod Dlagrun Substates (Part 1 of 2)

o . et
e

LAe

TIMING OVERVIEW

DIAGRAM DIAGRAM
SYMBOLS SYMBOLS

TASK SUBSTATE

MEANING

<ABORT ~ - <AB

<ACCEPT <A

<Completed(ab <CA

<Completed|ex <CE

<Completed <Co

<Delay <DL

<Dependents <DP

Abdorual

Accept

Completed(abn]

Completed(exc)

Completed

Delay

Dependents

Task has been aborted.

Tagk is waiting at an accept
statement that is not inside
a select statement.,

Tagk is completed due to an
abort statement, but is not
yet terminated. In Ada, a
task awaiting dependent
tagks at its “"end" is called
"completed”, After the
dependent tasks are termin-
ated the state changes to
terminated.

Task is completed due to an
unhandled exception, but is
not yet terminated. In Ada,
a task awaiting dependent
tasks at its "end" is called
“completed”, After the de-
pendent tasks are termin-
ated, the state changes to
terminated,

Task is completed. N. bort
statement was issued, and no
unhandled exception occured.

Task is waiting at a delay
statenent,

Tagk is waiting for depen-
dent tasks to terminate.

D.3.2.10

Table 2. AEA Overview and Detailed Diagram Substates (Part 2 of 2)

TIMING OVERVIEW
DIAGRAM DIAGRAM
SYMBOLS SYMBOLS TASK SUBSTATE MEANING
<Dependents{e <DE Dependents[exc] Task is waiting for
dependent tasks to allow an
unhandled exception to
propagate.,
<CALL <C Entry call Task is waiting for its

<Invalid state

<I/0 or AST

<Select or del

¢{Select or Ter

<SELECT

<Shared resour

<Terminated(a

<Terminated(e

<Terminated

<Timed entry

<1V

<I0

<SD

<ST

<S

<SR

<TA

<TE

<TN

<TI

Invalid state

1/0 or AST

Select or delay

Select or term.

Select

Shared resource

Terminated{abn])

Terminated{exc]

Terminated

Timed entry call

entry call to be accepted.

There is a bug in the VAX
Ada run-time library.

Task is waiting for 1/0
completion or some AST.
(Asynchronous system true).

Task is waiting at a select
statement with a delay
alternative.

Task is waiting at a select
statement with a terminate

alternative,

Task is waiting at a select
statement with neither an
else, delay, or terminate
alternative.

Task is waiting for an in-
ternal shared resource.

Task was terminated by an
abort.

Task was terminated because
of an uhandled exception.

Task terminated normally.

Task is waiting in a timed
entry call.,

D.3.2.11

ONGiNAL PAGE IS

